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I. INTRODUCTION 

The well known quadratic convergent Newton’s method 
for finding a simple root of the non-linear equation 

             ( ) 0f x                (1.1) 

Where :f D R R   is a scalar function on an open 
interval D, is given by 

             
1

( )

( )
n

n n
n

f x
x x

f x  


                        

(1.2) 

          (n = 0, 1, 2, 3 ………) 

Many iterative methods have been developed see [1-13] for 
solving the equation (1.1) by using several techniques 
including perturbation methods and quadrature formulae.  
Noor [8] suggested the following algorithm which has 
fourth order convergence 

For a given 0x , Noor’s two step algorithm to compute 

1nx  is 
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Recently, Jafar and Behzad [6] derived few variants of 
King’s fourth order family [12] 

i.e,
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Where ny is as given in (1.3) 

And, some of the variants suggested by Jafar and Behzad 
[6] are 
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All the above formulae are having fourth order convergence 
and ny is as given in (1.3) only. 

In the section 2 of this paper, we develop an iterative 
method for solving (1.1) and its convergence criteria is 
discussed.  And also, few variants are derived from this new 
method in the same section.  Several numerical examples 
are considered and compared with existing ones in the 
concluding section. 

II. THE NEW ITERATIVE METHOD 

Let ' ' be the exact root of the equation (1.1) in an open 
interval D in which ( )f x is continuous and has well 

defined first derivative and let nx be the thn approximate to 
the root  

of (1.1) and  

                          n nx e  
    

(2.1) 

Where ne is the error at the thn stage and  

                        ( ) 0f       (2.2) 

Expanding ( )f  by Taylor’s series about nx , we have
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Assume ne  is small enough and neglecting the higher 
powers in (2.3), from (2.1) & (2.2) 

We have 
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Which yields us 

        

( ) 1
2

( ) 4 ( )
1 1

( )

n
n

n n

n

f x
e

f y f y

f x

 
 
    
  
  

     (2.5) 

To make the denominator largest in magnitude, we take ne  
as 
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Taking ' ' in (2.1) as ( 1)thn  approximate to the root, 
from (2.1) and (2.6), we now define the following 
algorithm. 

Algorithm 2.1:   For a given 0x , compute the approximate 

solution 1nx   by iterative scheme. 
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 (2.7) 

(n = 0, 1, 2, 3 ……….) 

 

Where ny is as given in (1.3) 

This algorithm is free from second derivative and requires 
two functional evaluations and one of its first derivatives.  

The efficiency index of this method is 3 4 . 

 

Theorem 2.1:   Let D  be a single zero of sufficiently  

differentiable function :f D R R   for an open interval 

D.  If 0x is in the vicinity of , then algorithm 2.1 has 
fourth order convergence. 

 

Proof:  If ' '  be the root and nx be the thn approximate to 

the root, then expanding ( )nf x  about ' ' using Taylor’s 
expansion, we have 
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And,
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(2.9) 

Now,
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From (1.3) and (2.10), we have 
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From (2.1), (2.7) and (2.17) we have the rate of 
convergence of the method (2.7) is four. 
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Case 2.1:  By expanding 
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And, the above further yields 
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Considering up to first degree, second degree and third 
degree terms of the expression lying within the brackets of 
the formula (2.19), we have the following algorithms. 

 

Algorithm 2.2:  For a given 0x , compute the approximate 

solution 1nx  by iterative scheme. 
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           (n = 0, 1, 2, 3 ……..) 

Where ny is as given in (1.3). 

 

Theorem 2.2:   Let D  be a simple zero of sufficiently 
differentiable function :f D R R   for an open interval 

D.  If 0x is in the vicinity of   , then Algorithm 2.2 has 
third order convergence.  

 

Proof: As done in theorem (2.1), one can easily obtain the 
error relation as 
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Which gives us 
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Therefore, the algorithm (2.2) has third order convergence. 

Algorithm 2.3:  For a given 0x , compute the approximate 

solution 1nx  by iterative scheme. 
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                (n = 0, 1, 2, 3 ……..) 

Where ny is as given in (1.3). 

Theorem 2.3:   Let D  be a simple zero of sufficiently 
differentiable function :f D R R   for an open interval 

D.  If 0x is in the vicinity of   , then Algorithm 2.3 has 
fourth order convergence.  

Proof: As done in theorem (2.1), one can easily obtain the 
error relation as 
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Which gives us 
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Therefore, the algorithm (2.3) has fourth order 
convergence. 

Algorithm 2.4:  For a given 0x , compute the approximate 

solution 1nx  by iterative scheme. 
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                     (n = 0, 1, 2, 3 ……..) 

Where ny is as given in (1.3). 

Theorem 2.4:   Let D  be a simple zero of sufficiently 
differentiable function :f D R R   for an open interval 

D.  If 0x is in the vicinity of   , then Algorithm 2.4 has 
fourth order convergence.  

Proof: As done in theorem (2.1), one can easily obtain the 
error relation as 
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Which gives us 
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Therefore, the algorithm (2.4) has fourth order 
convergence. 

 

III. NUMERICAL EXAMPLES 

In this section, several examples are considered which 
are taken from [6, 11] and all the methods presented in this 
paper are being taken to tabulate the computational results 

below by using the stopping criteria 15( ) 10nf x  . 
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TABLE. I 

Equation and its root 
Initial 

Guess 0x  

 
Number of iterations taken to obtain the root 

by applying the following methods 
 

 
1.2 

 
1.4 1.5 1.6 1.7 1.8 1.9 2.7 2.19 

1.sin 1 02 2x x    

x  1.40449165 
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Err 
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2. 3 2 02x e xx     

x   0.25753029 
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3.cos 0x x   

x   0.73908513 
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4. sin 3cos 5 02xe x xx    

 
x  -1.20764783 
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2
5. sin 28 02 2 sin cosx x ex x x    
x   3.43717174 

        4.62210416 
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6. 4 10 03 2x x    

x   1.36523001 
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49 
17 
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2 
3 
3 

 

IV. CONCLUSION 

The tabulated results show that the methods (1.4) to 
(2.19) are converging at almost same pace compared to the 
method (1.2).  And, the algorithm (2.7) is also working 

well except in the case that 
( )

1 4
( )

n

n

f y

f x

 
 

 
 is negative. 
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